Revisiting the Empirical Fundamental Relationship

Benjamin Coifman
Associate Professor, Civil Engineering
Associate Professor, Electrical Engineering

The Ohio State University

Traffic Flow Theory and Characteristics Committee
2014 Summer Meeting - August 11-13, 2014 - Portland, Oregon USA
Symposium Celebrating 50 Years of Traffic Flow Theory
Introduction

- This talk provides an overview of:

Introduction

• This talk provides an overview of:

• This work takes a new approach to empirically establishing a fundamental relationship in heavily congested traffic
The fundamental relationship (FR) is commonly characterized in terms of a bivariate relationship between two of the three parameters- qkv
Conventional Empirical Fundamental Relations

• The fundamental relationship (FR) is commonly characterized in terms of a bivariate relationship between two of the three parameters- qkv

• It is difficult to measure k directly, so many empirical FR studies use occupancy, occ, as a proxy for k
The fundamental relationship (FR) is commonly characterized in terms of a bivariate relationship between two of the three parameters - qkv

- It is difficult to measure k directly, so many empirical FR studies use occupancy, occ, as a proxy for k

- Most empirical FR studies use traffic state measurements from detectors that average vehicle measurements over fixed time sampling periods
The fundamental relationship (FR) is commonly characterized in terms of a bivariate relationship between two of the three parameters—qkv.

It is difficult to measure k directly, so many empirical FR studies use occupancy, occ, as a proxy for k.

Most empirical FR studies use traffic state measurements from detectors that average vehicle measurements over fixed time sampling periods.

The result is considerable scatter in empirical FR data.

Conventional Empirical Fundamental Relations
Conventional Empirical Fundamental Relations

Measured q versus occ from one day at one dual loop detector

- The result is considerable scatter in empirical FR data
- The scatter is commonly attributed to combining non-stationary traffic states in a given sample
Conventional Empirical Fundamental Relations

Measured q versus occ from one day at one dual loop detector

- Each $T = 5$ min data point is more likely to combine different non-stationary traffic states, yet the scatter is diminished compared to $T = 30$ sec
Conventional Empirical Fundamental Relations

Measured q versus occ from one day at one dual loop detector

- Each $T = 5$ min data point is more likely to combine different non-stationary traffic states, yet the scatter is diminished compared to $T = 30$ sec

- Thus, the noise cannot strictly be due to averaging across non-stationary traffic states
Hypothetical Fundamental Relationship

- Homogeneous fleet of passenger vehicles with \(L = 20 \) ft under stationary conditions and very long sampling periods
Hypothetical Fundamental Relationship

q versus v

v drops by 33% → q drops by 10%

q versus occ
Hypothetical Fundamental Relationship

- The lowest 10 mph covers most of the q-occ plane
 - Yet this speed range exhibits the largest detector errors
Hypothetical Fundamental Relationship

- The lowest 10 mph covers most of the q-occ plane
 - Yet this speed range exhibits the largest detector errors

- Extending the relationship to homogeneous fleets with longer L
 - Many more errors arise due to varying L
Empirical Measurements

- Instead of measuring conventional q, occ and v, this work takes the following the single vehicle passage (svp) measures:

\[q_{svp} = \frac{1}{h} \]

\[occ_{svp} = \frac{on_time}{h} \times 100\% \]

\[v_{svp} = \frac{detector_spacing}{traversal_time} \]

\[L_{svp} = v_{svp} \times on_time \]
Data Aggregation

- Conventionally vehicles are aggregated together in arrival order.

- Rather, the traffic state is measured over the headway for each individual vehicle passage- aggregated by length and speed bins.
Data Aggregation

• Conventionally vehicles are aggregated together in arrival order
 - Partial headways introduce considerable noise to the measurements

• Rather, the traffic state is measured over the headway for each individual vehicle passage - aggregated by length and speed bins
 - Partial headways are eliminated by definition
Data Aggregation

- Conventionally vehicles are aggregated together in arrival order
 - Partial headways introduce considerable noise to the measurements
 - No regard for changing speeds within the sample
 - No regard for differing vehicle lengths

- Rather, the traffic state is measured over the headway for each individual vehicle passage- aggregated by length and speed bins
 - Partial headways are eliminated by definition
 - Vehicles are grouped by similar lengths and speeds before aggregation
Data Aggregation

• Conventionally vehicles are aggregated together in arrival order
 - Partial headways introduce considerable noise to the measurements
 - No regard for changing speeds within the sample
 - No regard for differing vehicle lengths
 - At low speeds the fixed time samples typically include few vehicles

• Rather, the traffic state is measured over the headway for each individual vehicle passage- aggregated by length and speed bins
 - Partial headways are eliminated by definition
 - Vehicles are grouped by similar lengths and speeds before aggregation
 - All aggregated data shown today from the new method include at least 100 vehicles in the given bin
Data Aggregation

• Conventionally vehicles are aggregated together in arrival order
 - Partial headways introduce considerable noise to the measurements
 - No regard for changing speeds within the sample
 - No regard for differing vehicle lengths
 - At low speeds the fixed time samples typically include few vehicles

• Rather, the traffic state is measured over the headway for each individual vehicle passage- aggregated by length and speed bins
 - Partial headways are eliminated by definition
 - Vehicles are grouped by similar lengths and speeds before aggregation
 - All aggregated data shown today from the new method include at least 100 vehicles in the given bin
 - The result is a homogeneous set of vehicles and speeds in each bin before aggregation
Data Aggregation

• Conventionally vehicles are aggregated together in arrival order
 - Partial headways introduce considerable noise to the measurements
 - No regard for changing speeds within the sample
 - No regard for differing vehicle lengths
 - At low speeds the fixed time samples typically include few vehicles

• Rather, the traffic state is measured over the headway for each individual vehicle passage - aggregated by length and speed bins
 - Partial headways are eliminated by definition
 - Vehicles are grouped by similar lengths and speeds before aggregation
 - All aggregated data shown today from the new method include at least 100 vehicles in the given bin
 - The result is a homogeneous set of vehicles and speeds in each bin before aggregation
 - Furthermore, suspected detector errors are excluded
Data Aggregation

- Conventionally vehicles are aggregated together in arrival order
 - Partial headways introduce considerable noise to the measurements
 - No regard for changing speeds within the sample
 - No regard for differing vehicle lengths
 - At low speeds the fixed time samples typically include few vehicles

- Rather, the traffic state is measured over the headway for each individual vehicle passage- aggregated by length and speed bins
 - Partial headways are eliminated by definition
 - Vehicles are grouped by similar lengths and speeds before aggregation
 - All aggregated data shown today from the new method include at least 100 vehicles in the given bin
 - The result is a homogeneous set of vehicles and speeds in each bin before aggregation
 - Furthermore, suspected detector errors are excluded
 - Most importantly, the new approach eliminates the need to seek out stationary traffic conditions in congested traffic
Empirical Measurements

\[T = 30 \text{ sec} \]

- Using same day and detector as before, svp point cloud is far noisier than \(T=30 \text{ sec} \) samples
Empirical Measurements

Sorting into length bins...
(3 shown)
Empirical Measurements

Picking the most common length bin and sorting into speed bins... (3 shown)
Empirical Measurements

Picking the most common length bin and sorting into speed bins... (3 shown)

Finding the median q and occ for each speed bin...
Empirical Measurements

Connecting the median q and occ across the speed bins for this length bin.
Empirical Measurements

18–22 ft, one day

Comparing svp against
$T = 30$ sec
Empirical Measurements

18–22 ft, one day

18–22 ft, 18 days individually

Repeating svp over 18 days individually
Empirical Measurements

Combining all 18 days before aggregating

18–22 ft, 18 days individually

18–22 ft, 18 days combined
Empirical Measurements

Repeating across all 4 lanes individually
Empirical Measurements

Combining the days and lanes together, now have enough observations so that the less common lengths have over 100 samples in most speed bins.
Empirical Measurements

- Only use length-speed bins with at least 100 veh observations
- Upper bound $v = 17$ mph from the maximum sustained q at this location
- Lower bound is 5 mph
 - Dual loop detectors assume acceleration can be ignored
 - Can measure $v \leq 5$ mph for a vehicle that stops over the detector
• Only use length-speed bins with at least 100 veh observations
• Upper bound $v = 17$ mph from the maximum sustained q at this location
• Lower bound is 5 mph
• Although v range is 5-17 mph, it covers 25% of observable occ
Empirical Measurements

- Only use length-speed bins with at least 100 veh observations
- Upper bound $v = 17$ mph from the maximum sustained q at this location
- Lower bound is 5 mph 1 mph
- Although v range is 5-17 mph, it covers 25% of observable occ
- Relaxing some of the constraints
Empirical Measurements

- Only use length-speed bins with at least 100 veh observations
- Upper bound \(v = 17 \) mph from the maximum sustained \(q \) at this location
- Lower bound is 5 mph 1 mph
- Although \(v \) range is 5-17 mph, it covers 25% of observable \(occ \)
- Relaxing some of the constraints
- For passenger veh 1-17 mph covers 50% of the observable \(occ \)
Empirical Measurements

All of the speed bins exhibit trends consistent with the hypothetical example.
Discussion and Conclusions

- Historically there have been at least three sources of noise in measuring empirical FR:
 - Errors due to aggregating vehicles together,
 - Errors due to the detector settings, and
 - Variability due to site specific traffic behavior
Discussion and Conclusions

- Historically there have been at least three sources of noise in measuring empirical FR:
 - Errors due to aggregating vehicles together,
 - Errors due to the detector settings, and
 - Variability due to site specific traffic behavior

- All too often the aggregation errors swamped out the other two sources, particularly at low speeds
Discussion and Conclusions

- Historically there have been at least three sources of noise in measuring empirical FR:
 - Errors due to aggregating vehicles together,
 - Errors due to the detector settings, and
 - Variability due to site specific traffic behavior

- All too often the aggregation errors swamped out the other two sources, particularly at low speeds

- Having now accounted for most of the aggregation errors, the two remaining sources should become much more apparent
 - However, the magnitude of these two remaining sources of noise should be no larger than it has been in past methods
Discussion and Conclusions

- Historically there have been at least three sources of noise in measuring empirical FR:
 - Errors due to aggregating vehicles together,
 - Errors due to the detector settings, and
 - Variability due to site specific traffic behavior

- All too often the aggregation errors swamped out the other two sources, particularly at low speeds

- Having now accounted for most of the aggregation errors, the two remaining sources should become much more apparent
 - However, the magnitude of these two remaining sources of noise should be no larger than it has been in past methods

- By revealing site specific behavior, this work will help us understand the factors determining driver behavior and traffic flow
Discussion and Conclusions

- It is important to note that this is a study of q-occ, not q-k
 - From the discussion in the paper one should be very careful about generalizing from occ to k
Discussion and Conclusions

- It is important to note that this is a study of q-occ, not q-k
 - From the discussion in the paper one should be very careful about generalizing from occ to k

- Although it is not yet clear how best to deal with inhomogeneous vehicle lengths in mixed traffic, the technique presented should prove to be an important tool to help find the answer
 - In the mean time, the curves for 18-22 ft vehicles should be immediately useful for studies of passenger vehicles
Discussion and Conclusions

- It is important to note that this is a study of q-occ, not q-k
 - From the discussion in the paper one should be very careful about generalizing from occ to k

- Although it is not yet clear how best to deal with inhomogeneous vehicle lengths in mixed traffic, the technique presented should prove to be an important tool to help find the answer
 - In the mean time, the curves for 18-22 ft vehicles should be immediately useful for studies of passenger vehicles

- The 18 days of detector data are available here: http://www.ece.osu.edu/~coifman/documents
 or email me for the current location
The raw data are available here:

http://www.ece.osu.edu/~coifman/documents