A REAL-TIME SIGNAL CONTROL STRATEGY FOR MITIGATING THE IMPACT OF BUS STOPS ON URBAN ARTERIALS

Traffic Flow Theory and Characteristics Committee
2014 Summer Meeting
August 11, 2014

Celeste Chavis, Ph.D.
Assistant Professor
Transportation and Urban Infrastructure Studies
Morgan State University
celeste.chavis@morgan.edu

Eleni Christofa, Ph.D.
Assistant Professor
Civil and Environmental Engineering
University of Massachusetts Amherst
christofa@ecs.umass.edu
Motivation

• Buses stopping near a signalized intersection may adversely affect the capacity of that intersection.

• The effect might be different depending on the location of the bus stop and the time the bus spends dwelling.
Background

• Several studies have investigated the impact of bus stops on capacity of signalized intersections.

• Few have suggested real-time control strategies to mitigate their impacts:
 • Bus holding strategies have been recommended
Research Objective

• Use kinematic wave theory to quantify the impact of:
 • bus stop location
 • dwell time
 • start and end time of a bus stop event

on the capacity of signalized intersections

• Develop and test a real-time signal control strategy that:
 • mitigates the impacts of bus stop operations on traffic by increasing green time over the next cycle,
 • while ensuring that oversaturation in the cross streets does not last more than one cycle.
Research Approach

• Undersaturated signalized intersections

• Focus is on the impact on the downstream to the bus stop intersection

• Real-time information is available on:
 • Bus arrival and departure time
 • Arrival demand
 • Signal timings

• Arrival demand at the bus stop approach can be higher or lower than the bus stop induced restricted capacity.

• Dwell times do not exceed one cycle length

• Control strategy is implemented in the cycle after the bus leaves the bus stop.
Research Approach

\[
D_R = \max \left\{ \min \left\{ G - \frac{N_o - N_i + N}{q_C}, 0 \right\}, D_{R_{\text{max}}} \right\}
\]

- \(D_R\): red truncation for cross street (\(\leq 0\)) [sec]
- \(G\): green for bus stop approach [sec]
- \(N_o\): number of vehicles that arrived during the cycle(s) the bus is present [veh]
- \(N_i\): number of vehicles served during the cycle(s) the bus is present [veh]
- \(N\): number of vehicles arriving during the cycle following the bus stop event [veh]
- \(q_C\): road capacity of bus stop approach [vph]
- \(D_{R_{\text{max}}}\): maximum red truncation allowed [sec]
Accounting for Impact on Cross-street

\[D_{R_{max}} \geq \frac{2q_{Ax}C}{q_{Cx}} - 2G_x \]

- \(G_x \): green time for cross-street approach \(x \) [sec]
- \(q_{Ax} \): arrival rate at the cross street [vph]
- \(q_{Cx} \): road capacity of cross street approach [vph]
- \(C \): cycle length [sec]
Research Approach

\[D_R = \max \left\{ \min \left\{ G - 3600 \frac{N_o - N_i + N}{q_C}, 0 \right\}, D_{R_{max}} \right\} \]

\(D_R \): red truncation for cross street [sec] \((\leq 0)\)
\(G \): green for bus stop approach [sec]
\(N_o \): number of vehicles that arrived during the cycle(s) the bus is present [veh]
\(N_i \): number of vehicles served during the cycle(s) the bus is present [veh]
\(N \): number of vehicles arriving during the next cycle [veh]
\(q_C \): road capacity of bus stop approach [vph]
\(D_{R_{max}} \): maximum red truncation allowed [sec]

\[N_i = \frac{\tau_C q_C + \tau_I q_I + \tau_A q_A}{3600} \]

\(q_I \): road capacity of signalized approach when a bus is blocking a traffic lane [vph]
\(q_A \): arrival flow at signalized approach [vph]
\(\tau_C, \tau_I, \tau_A \): total time that the flow rate is \(q_C, q_I, q_A \) [sec]
Research Approach
Research Approach

![Graph showing distance and time with labeled points and intervals]
Bus stop event cases

Three parameters define the different cases:

- bus stop location, X
- start of bus stop event, T_o
- end of bus stop event, T_e

in combination with signal timing design and demand

www.sfgate.com

http://en.wikipedia.org/wiki/San_Antonio
Case Identification

Case 1 \(q_A > q_I \) and \(q_A \leq q_I \)

Case 2 \(q_A > q_I \)

Possible \(T_o \) locations

Possible \(T_e \) locations
Example I: control needed
Example II: control not needed
Application

- University and San Pablo Avenues, Berkeley, CA
- Only geometry, phasing scheme, and bus demand was used
- Demands were adjusted so that conditions represent major and minor street operations
- Degrees of saturation:
 - San Pablo Avenue: 0.28 (low), 0.44 (high)
 - University Avenue: 0.57 (low), 0.96 (high)
Application

• Bus stop locations tested:
 • 30, 50, 100, and 500 ft

• Average dwell time = 40 sec
 (with 30 sec standard deviation)

• A bus at a stop was assumed to be blocking a whole traffic lane

• Simulations were performed with AIMSUN
Results: Average Vehicle Delay

Bus stop approach

Cross-street approaches
Results: Average Queue Length

Bus stop approach

Cross-street approaches
Summary

Conclusions:

• For cases that $q_A \leq q_I$ there is rarely a need for control

• When $q_A > q_I$:
 • average delay of bus stop approach can be reduced by 17% (~6 seconds)
 • average delay of cross-street approach increases by 3-5 seconds
 • overall intersection delay decreases

• Highest benefits when:
 • bus stops located close to the stopline
 • bus stop approach has a much higher demand than the cross street
Summary

Advantages:

- It can be implemented for any demand level, bus stop location, and bus dwell time.
 - Therefore, it is applicable to any type of incident on urban signalized arterials.
- No bus arrival prediction is necessary
- Input data are available from widely used sensing technologies.

http://ilovebikingsf.com/category/bicycle-infrastructure/
Next Steps

- Test different geometries, demand patterns, number of phases
- More than one bus stop events within one cycle or consecutive cycles
- Dwell times longer than a cycle length
- Investigate the impact of farside bus stops on capacity of the intersection just upstream of them
Questions?

Eleni Christofa
cristofa@ecs.umass.edu

Celeste Chavis
celeste.chavis@morgan.edu