Heterogeneity of Capacity Distributions among Different Freeway Lanes

Presented by: Kun Xie

Kun Xie, Kaan Ozbay and Hong Yang
Department of Civil and Urban Engineering
Center for Urban Science and Progress (CUSP)
Urban Mobility and Intelligent Transportation Systems (UrbanMITS) Laboratory
New York University
New Concept of Capacity

• Constant Capacity (traditional concept)
 – The maximum traffic flow rate that traverses a section under prevailing roadway, traffic and control conditions. (HCM 2000)

• Stochastic Capacity (new concept)
 – The traffic flow rate which causes traffic breakdown. (Brilon et al. 2005)
 – Becomes a random variable and is related to traffic composition, driving behavior, as well as environmental characteristics.
Motivation & Objective

• Previous Research
 – Treated a multi-lane freeway section as a single analysis unit.
 – Aggregated data from multiple lanes was used.

• Semi-Congested State
 – Traffic compositions and operational features vary across different lanes.
 – Traffic demand was not assigned evenly among lanes.

• Objective
 – Investigate the heterogeneity of capacity distributions among individual lanes.
Data Preparation

- **Data Source**
 - PeMS of the California DOT
- **Sampling**
 - Four diverge sections
 - Interstate highway
 - Similar lane configurations

Lane configuration and sensor detector location
Data Preparation

- **Lane-Level Data**
 - Mean speed and volume were obtained for each individual lane at 5-min intervals

- **Capacity Observations and Censored Data**

 ![Graph showing speed and volume over time with breakdown and threshold points]

 - Breakdown Point
 - Threshold Speed

 Capacity observation and censored data
Data Preparation

• Process to Determine Optimal Threshold Speed

- Traffic efficiency E is defined as the product of speed v and volume q.
- Determine the optimal threshold speed that can maximize the average of efficiency reduction ($E_i - E_{i-1}$).
Data Preparation

- Optimal Threshold Speed Identified

<table>
<thead>
<tr>
<th>Section</th>
<th>Median Lane</th>
<th>Center Lane</th>
<th>Shoulder Lane</th>
<th>Cross Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 1</td>
<td>41</td>
<td>35</td>
<td>33</td>
<td>39</td>
</tr>
<tr>
<td>Section 2</td>
<td>46</td>
<td>40</td>
<td>37</td>
<td>41</td>
</tr>
<tr>
<td>Section 3</td>
<td>49</td>
<td>43</td>
<td>40</td>
<td>48</td>
</tr>
<tr>
<td>Section 4</td>
<td>52</td>
<td>47</td>
<td>40</td>
<td>48</td>
</tr>
<tr>
<td>Average</td>
<td>47.00</td>
<td>41.25</td>
<td>38.00</td>
<td>44.00</td>
</tr>
</tbody>
</table>

Average capacity identified by the optimal threshold speed is 1999 veh/h/lane

Average capacity identified by the standard threshold speed is 1926 veh/h/lane

Use the median lane of section 4 for demonstration
Tests for Capacity Heterogeneity

• Null and Alternative Hypotheses

\[H_0: \ h_1(q) = h_2(q) = \ldots = h_K(q) \ \text{for all} \ q \]
\[H_A: \ h_{k_1}(q) \neq h_{k_2}(q) \ \text{for at least one pair of} \ k_1 \ \text{and} \ k_2, \]
where \(1 \leq k_1 \neq k_2 \leq K \)

• Test Statistics

For \(k \text{th lane}: \)
\[Z_k = \sum_{i=1}^{D} W_k(q_i) \left(\frac{d_{ik}}{Y_{ik}} - \frac{d_i}{Y} \right) \]

For all the lanes: \[\chi^2 = (Z_1, Z_2, \ldots Z_{K-1}) \Sigma^{-1} (Z_1, Z_2, \ldots Z_{K-1})' \]

The overall test statistic \(\chi^2 \) is treated as a chi-square distribution with degree of freedom \(K-1 \)
Tests for Capacity Heterogeneity

• Log-Rank Test and Wilcoxon Test
 – If $W(q_i)=1$, it leads to the log-rank test
 – If $W(q_i)=Y_i$, it leads to the Wilcoxon test

<table>
<thead>
<tr>
<th>Section</th>
<th>Test</th>
<th>Chi-Square</th>
<th>Degree of Freedom</th>
<th>P-Value</th>
<th>Accepted Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Log-rank</td>
<td>5180</td>
<td>2</td>
<td><0.0001</td>
<td>Reject H_0, accept H_A</td>
</tr>
<tr>
<td></td>
<td>Wilcoxon</td>
<td>2616</td>
<td>2</td>
<td><0.0001</td>
<td>Reject H_0, accept H_A</td>
</tr>
<tr>
<td>2</td>
<td>Log-rank</td>
<td>268</td>
<td>2</td>
<td><0.0001</td>
<td>Reject H_0, accept H_A</td>
</tr>
<tr>
<td></td>
<td>Wilcoxon</td>
<td>71</td>
<td>2</td>
<td><0.0001</td>
<td>Reject H_0, accept H_A</td>
</tr>
<tr>
<td>3</td>
<td>Log-rank</td>
<td>3743</td>
<td>2</td>
<td><0.0001</td>
<td>Reject H_0, accept H_A</td>
</tr>
<tr>
<td></td>
<td>Wilcoxon</td>
<td>1309</td>
<td>2</td>
<td><0.0001</td>
<td>Reject H_0, accept H_A</td>
</tr>
<tr>
<td>4</td>
<td>Log-rank</td>
<td>45</td>
<td>2</td>
<td><0.0001</td>
<td>Reject H_0, accept H_A</td>
</tr>
<tr>
<td></td>
<td>Wilcoxon</td>
<td>52</td>
<td>2</td>
<td><0.0001</td>
<td>Reject H_0, accept H_A</td>
</tr>
</tbody>
</table>
Bayesian Hierarchical Weibull Model

- **Weibull Distribution**
 - The breakdown volume q is assumed to follow Weibull distribution $W(\alpha, \lambda)$

 Probability density function:
 $$f(q \mid \alpha, \lambda) = \alpha q^{\alpha - 1} \exp(\lambda - \exp(\lambda)q^\alpha)$$

 Cumulative density function:
 $$F(q \mid \alpha, \lambda) = \int f(q \mid \alpha, \lambda) dq = 1 - \exp(-\exp(\lambda)q^\alpha)$$

 Survival function:
 $$S(q \mid \alpha, \lambda) = 1 - F(q \mid \alpha, \lambda) = \exp(-\exp(\lambda)q^\alpha)$$

 Hazard function:
 $$H(q \mid \alpha, \lambda) = \frac{f(q \mid \alpha, \lambda)}{S(q \mid \alpha, \lambda)} = \alpha q^{\alpha - 1} \exp(\lambda)$$

- **Address Censoring Issues**
 - Likelihood function

 $$L(\alpha, \lambda \mid q, \nu) = \prod_{i=1}^{n} [f(q_i \mid \alpha, \lambda)^{\nu_i} S(q_i \mid \alpha, \lambda)^{1-\nu_i}]$$

 $$= \alpha^d \exp\{d\lambda + \sum_{i=1}^{n} (\nu_i(\alpha - 1)\log(q_i) - \exp(\lambda)q_i^\alpha)\}$$

 - Probability density function of capacity observation
 - Survival function of censored data
Bayesian Hierarchical Weibull Model

- Bayesian method
 - Has the ability to deal with insufficient data issue, to flexibly select parameter distributions, and to accommodate complicated model structures.

\[
\pi(\alpha, \lambda | q, v) \propto L(\alpha, \lambda | q, v) \pi(\alpha | r_0, m_0) \pi(\lambda | \mu_0, \sigma_0^2)
\]

\[
\alpha \sim \Gamma(r_0, m_0) \quad \lambda \sim N(\mu_0, \sigma_0^2)
\]

- Commonly used priors for Weibull distribution:

- Hierarchical structure
 - Parameters are allowed to vary across freeway sections
 - For the \(k^{\text{th}}\) lane at \(j^{\text{th}}\) section:

\[
\alpha_{kj} \sim \Gamma(r_k, m_k) \quad \lambda_{kj} \sim N(\mu_k, \sigma_k^2)
\]
Bayesian Hierarchical Weibull Model

• Model Assessment
 – Deviance Information Criterion (DIC)

 $$DIC = \bar{D}(\theta) + p_D$$

 $\bar{D}(\theta)$: measure of model fitness
 p_D: measure of model complexity

• Bayesian Estimation Procedure
 – Bayesian models were estimated via a Markov Chain Monte Carlo (MCMC) algorithm.
 – Two MCMC chains of 30,000 iterations were run (first 10,000 as burn-in).
 – Brooks-Gelman-Rubin (BGR) diagnostic was used to assess the convergence of multiple chains.
Results & Discussion

- **Modeling Results**
 - Two model structures: standard Weibull vs hierarchical Weibull
 - Two datasets: uncensored vs censored

<table>
<thead>
<tr>
<th>Sci</th>
<th>Median Lane</th>
<th>Center Lane</th>
<th>Shoulder Lane</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>λ</td>
<td>λ</td>
<td>λ</td>
<td>$D(\theta)$</td>
</tr>
<tr>
<td></td>
<td>Mean (95% BCI)</td>
<td>Mean (95% BCI)</td>
<td>Mean (95% BCI)</td>
<td>Mean (95% BCI)</td>
</tr>
<tr>
<td>Uncensored Dataset</td>
<td>-60.05 (-66.08, -55.64)</td>
<td>-60.09 (-64.92, -55.05)</td>
<td>-44.68 (-49.15, -40.57)</td>
<td>10132</td>
</tr>
<tr>
<td>Censored Dataset</td>
<td>-65.89 (-71.46, -59.76)</td>
<td>-64.7 (-70.47, -58.37)</td>
<td>-50.45 (-55.33, -45.4)</td>
<td>10543</td>
</tr>
<tr>
<td>Standard Weibull</td>
<td>0.38 (0.02, 1.59)</td>
<td>0.59 (0.02, 3.2)</td>
<td>1.29 (0.02, 5.44)</td>
<td>9610</td>
</tr>
<tr>
<td>Hierarchical Weibull</td>
<td>7.90 (7.33, 8.69)</td>
<td>8.04 (7.37, 8.68)</td>
<td>5.96 (5.41, 6.55)</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>8.64 (7.83, 9.36)</td>
<td>8.61 (7.76, 9.37)</td>
<td>6.69 (6.02, 7.33)</td>
<td>10120</td>
</tr>
<tr>
<td></td>
<td>0.13 (0.07, 0.27)</td>
<td>0.17 (0.08, 0.45)</td>
<td>0.32 (0.11, 0.62)</td>
<td>10549</td>
</tr>
<tr>
<td></td>
<td>10.12 (9.09, 11.02)</td>
<td>10.00 (8.74, 11.06)</td>
<td>11.65 (10.3, 12.7)</td>
<td>9626</td>
</tr>
<tr>
<td></td>
<td>9.33 (8.28, 10.29)</td>
<td>9.75 (8.94, 10.24)</td>
<td>10.15 (9.13, 10.96)</td>
<td>10137</td>
</tr>
</tbody>
</table>
Results & Discussion

Model Comparisons

<table>
<thead>
<tr>
<th></th>
<th>Uncensored Dataset</th>
<th>Censored Dataset</th>
<th>* Inconsistent results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median Lane</td>
<td>Center Lane</td>
<td>Shoulder Lane</td>
</tr>
<tr>
<td>Standard Weibull</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25th Percentile</td>
<td>1702</td>
<td>1506</td>
<td>1469</td>
</tr>
<tr>
<td>50th Percentile</td>
<td>1902</td>
<td>1680</td>
<td>1702*</td>
</tr>
<tr>
<td>75th Percentile</td>
<td>2077</td>
<td>1832</td>
<td>1913*</td>
</tr>
<tr>
<td>Hierarchical Weibull</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25th Percentile</td>
<td>1692</td>
<td>1434</td>
<td>1395</td>
</tr>
<tr>
<td>50th Percentile</td>
<td>1846</td>
<td>1566</td>
<td>1504</td>
</tr>
<tr>
<td>75th Percentile</td>
<td>1977</td>
<td>1678</td>
<td>1596</td>
</tr>
</tbody>
</table>

The 25th, 50th and 75th Percentiles of the Estimated Capacity Distributions (veh/h/lane)

* Inconsistent results

![Hierarchical Weibull Non-Censoring](image1)

![Hierarchical Weibull Censoring](image2)
Results & Discussion

- Lane-Specific Capacity Distributions

 - Breakdown Probability
 - Breakdown Hazard

 • Breakdown probability/hazard at certain volume: median lane < center lane < shoulder lane.
 • Breakdown hazards are greater as the volume increases.
 • Cross section-based capacity distribution is close to that of the center lanes, but is significantly different from those of the median and shoulder lanes.
Results & Discussion

• Difference of Capacity Distributions among Freeway Sections

Standard deviations of parameters across sections (i.e. \(sd(\lambda) \) and \(sd(\alpha) \)): median lane<center lane<shoulder lane
Summary & Conclusions

- A method to obtain the **optimal threshold speed** by maximizing the average reduction of efficiency was proposed.
- **Log-rank** and **Wilcoxon** tests were conducted and the results confirmed the heterogeneity of capacity distributions among lanes.
- A **Bayesian hierarchical Weibull model** based on censored capacity data was used to estimate these lane-specific capacity distributions.
 - Estimate breakdown probability for each individual lane
 - Allow parameters to vary across freeway sections
 - Censored data is appropriately treated
 - Bayesian approach is adopted
- Diagnose bottlenecks with **semi-congested** cases and guide vehicles to choose uncongested lanes to reduce breakdown occurrence
Thank You!

By Kun Xie, Kaan Ozbay and Hong Yang

Department of Civil and Urban Engineering
Center for Urban Science and Progress (CUSP)
Urban Mobility and Intelligent Transportation Systems
(UrbanMITS) Laboratory
New York University

For more details, please contact: kun.xie@nyu.edu