Calibrating Multilane First-order Traffic Flow Model with Endogenous Representation of Lane-flow Equilibrium

Ritsumeikan University Yasuhiro SHIOMI
Ritsumeikan University Tatsuya KOZONO
Lane traffic management in ATM

Active Traffic (and Demand) Management (ATM)
Various menus about lane managements

- HOV and HOT lane
- Keep left (or right) recommendation
- Optic flow for speed control by vection effect
- Ramp metering
- Various speed limit
- Incident management
- Merging channelization
- Hard shoulder opening
- Additional lane etc.

Not well organized and optimized as comprehensive lane management
Model-based decision support system for freeway management

- The needs for the lane-flow management to increase bottleneck capacity, but...

![Diagram showing the relationship between online data collection, online traffic state estimation, traffic state prediction, optimization, and network flow simulation.]

- Data base, knowledge and experiences of controllers
Challenges

Lane-changing is a *microscopic and stochastic maneuver* depending on the surrounding conditions.

- Calibration of the microscopic modeling requires high resolution data (ex. trajectories)
- High cost for data collection

How to overcome?

- A macroscopic modeling of multi-lane traffic including lane-changes
 - Parsimony representation for calibration
 - Reasonable reproducibility of lane-flow phenomena
Objectives

- To develop a macroscopic multilane first-order traffic flow model which endogenously represents lane-flow equilibrium
- To calibrate the parameters in the proposed model on the basis of conventional traffic detectors collected at sag section
MULTILANE FIRST-ORDER TRAFFIC FLOW MODEL
- Model framework
- Lane flow equilibrium and lane changes
- Numerical solution of multi-lane flow

PARAMETER CALIBRATION AT SAG SECTION
- Calibration methods
- Case studies

CONCLUSIONS
- Discussions
- Future works

Outline
Assumptions and limitations

- Fundamental Diagram is defined to each lane
 - Speed is monotonously decreasing as density increases.

- Spontaneous lane changes are considered
 - Not include mandatory lane changes such as towards off ramp or from on ramp.

- Traffic flow consists of homogeneous vehicles
 - Not consider the differences between a passenger car and a large trailer
Multilane first-order traffic flow

- **LWR model**
 - Fundamental Diagram: $V = f(K)$
 - Conservation law:

 $\frac{\partial K}{\partial t} + \frac{\partial (KV)}{\partial x} = 0$

- **Godunov Scheme**
 - $A_{it} = \min \left(S_{ti}, R_{t,i+1}, \left(k_{ji} - K_{t,j+1} \right) \cdot \Delta x \right)$
 - where

 $S_{ti} = \begin{cases}
 K_{ti} \cdot V_{ti} \cdot \Delta t & \text{if } 0 \leq K_{ti} \leq k_{ci} \\
 k_{ci} \cdot v_{ci} \cdot \Delta t & \text{otherwise}
 \end{cases}$

 $R_{t,j+1} = \begin{cases}
 k_{ci+1} \cdot v_{ci+1} \cdot \Delta t & \text{if } 0 \leq K_{t,j+1} \leq k_{ci+1} \\
 K_{t,j+1} \cdot V_{t,j+1} \cdot \Delta t & \text{otherwise}
 \end{cases}$

Multilane (Laval and Danganzo, 2006)

- Lane specific FD: $V_l = f_l(K_l)$
- Conservation law considering flow balance among lanes:

 $\frac{\partial K_l}{\partial t} + \frac{\partial (K_l V_l)}{\partial x} = \Phi_l$

 where $\Phi_l = \sum_{l' \neq l} \Phi_{l' \rightarrow l} - \sum_{l' \neq l} \Phi_{l \rightarrow l'}$

- Balancing term
- Come from
- Out to

 \[l - 1 \quad l \quad l + 1 \]
Lane flow distribution

- Characteristic relationship between total density and fraction of lane flow (= lane flow distribution).

- Lane flow distribution is considered as the equilibrium situation, where the costs of using each lane is stochastically balanced.

- Lane changes is represented as the dynamics towards the equilibrium situation.
Motivations for spontaneous lane changes

<Motivation towards the outer lanes>

- To follow keep left (or right) rule

<Motivation towards the inner lanes>

- To overtake slower vehicles to shorten the travel time
Specification of cost function

- Two motivations for spontaneous lane changes

 <Motivation towards the outer lanes>
 - To follow keep left (or right) rule

 <Motivation towards the inner lanes>
 - To overtake slower vehicles to shorten the travel time

- Cost for a vehicle \(n \) to use lane \(l \) at section \(i \): \(c_{nil}(k_{ilt}) \)

\[
c_{nil}(k_{ilt}) = \alpha_{nil} + \beta_{nil} \cdot \left\{ f_{il}(k_{ilt}) \right\}^{-1} + \varepsilon
\]

A constant value defined to each lane: the cost to break keep left rule
Specifcation of cost function

- Motivations for spontaneous lane changes

 <Motivation towards the outer lanes>
 - To follow keep left (or right) rule

 <Motivation towards the inner lanes>
 - To overtake slower vehicles to shorten the travel time

- Cost for a vehicle \(n \) to use lane \(l \) at section \(i \):
 \[
 c_{nil}(k_{ilt}) = \alpha_{nil} + \beta_{nil} \cdot \left\{ f_{il}(k_{ilt}) \right\}^{-1} + \varepsilon
 \]

 A non-negative parameter indicating the sensitivity to travel time

 Inverse of speed
 (= travel time for a unit of distance)

 \(f_{il}(k_{ilt}) : \) Fundamental diagram
Specification of cost function

- Motivations for spontaneous lane changes
 <Motivation towards the outer lanes>
 - To follow keep left (or right) rule
 <Motivation towards the inner lanes>
 - To overtake slower vehicles to shorten the travel time

- Cost for a vehicle \(n \) to use lane \(l \) at section \(i \): \(c_{nil}(k_{ilt}) \)

\[
c_{nil}(k_{ilt}) = \alpha_{nil} + \beta_{nil} \cdot \left\{ f_{il}(k_{ilt}) \right\}^{-1} + \varepsilon
\]

An error term:
Heterogeneity of driver, and
limited recognition
Lane choice probability and lane flow equilibrium

- Let ϵ follows Weibull distribution with $(0, \theta)$, the probability of a vehicle chooses lane l under the given densities $K (= k_1 + \ldots + k_n)$

$$p_{il}(K_{it}) = \frac{\exp[-\theta \cdot c_{il}(k_{ilt})]}{\sum_k \exp[-\theta \cdot c_{ik}(k_{ikt})]}$$

- At the equilibrium state,

$$p_{il}^*(K_{it}) = \frac{\exp[-\theta \cdot c_{il}(k_{ilt}^*)]}{\sum_k \exp[-\theta \cdot c_{ik}(k_{ikt}^*)]} = \frac{k_{ilt}^*}{K_{it}}$$

\leftarrow Lane choice probability

\leftarrow Lane fraction
SUE in lane choice

Choose a lane for the next cell to reduce the perceived cost

As traffic moves, lane flow approaches Stochastic User Equilibrium (SUE)
Equivalent optimization problem

- SUE is solved by the problem,

\[
\min Z(k) = \sum_{k} \int_{0}^{k_k} c_k(\omega) \, d\omega + \frac{1}{\theta} \sum_{k} k_k \ln \frac{k_k}{K}
\]

subject to

\[K = \sum_{k} k_k\]

\[k_k \geq 0\]

- By applying MSA,

\[
\min Z(y) = \sum_{k} y_k c_k(z_k) + \frac{1}{\theta} \sum_{k} y_k \ln \frac{y_k}{Y}
\]

subject to

\[Y = \sum_{k} y_k\]

\[y_k \geq 0\]

- KKT condition

\[y_k^* = Y \cdot \frac{\exp[-\theta \cdot c_k(z_k)]}{\sum_{j} \exp[-\theta \cdot c_j(z_j)]}\]

* Lane choice probability can be defined by the current lane cost
Numerical treatments of lane flow

- The operation gives the better solution of SUE

Lane density at time step t, cell i

$$z(t+1, i+1) = z(t, i) + \left(\frac{1}{\tau}\right)\{y^* - z(t, i)\}$$

An adjustment parameter (≤ 1)

The number of time step a driver takes to execute a lane change.

- KKT condition

$$y_k^* = Y \cdot \frac{\exp[-\theta \cdot c_k(z_k)]}{\sum_j \exp[-\theta \cdot c_j(z_j)]}$$

- Capacity constrains on the adjacent lanes are considered by IT principle (Laval and Daganzo, 2006)

Change the lanes based on the cost at cell (t, i)

Outside
Middle
Median

Approaching SUE
Outline

MULTILANE FIRST-ORDER TRAFFIC FLOW MODEL
- Model framework
- Lane flow equilibrium and lane changes
- Numerical solution of multi-lane flow

PARAMETER CALIBRATION AT SAG SECTION
- Calibration methods
- Case studies

CONCLUSIONS
- Discussions
- Future works
How to calibrate?

- Step 1: Calibrate parameters of fundamental diagram by Least Square Method using detector data.
 (Estimation parameters: free speed, critical density, critical speed, and jam density)
How to calibrate?

• Step 1: Calibrate parameters of fundamental diagram by Least Square Method using detector data.

• Step 2: Give tentative parameters to the cost function

\[c_{nil}(k_{ilt}) = \alpha_{nil} + \beta_{nil} \cdot \left\{ f_{il}(k_{ilt}) \right\}^{-1} + \epsilon \]

On outside lane the parameters are fixed as \(\alpha = 0, \beta = 1.0 \)
How to calibrate?

- **Step 1**: Calibrate parameters of fundamental diagram by Least Square Method using detector data.

- **Step 2**: Give tentative parameters to the cost function.

 \[c_{nil}(k_{ilt}) = \alpha_{nil} + \beta_{nil} \cdot \left\{ f_{il}(k_{ilt}) \right\}^{-1} + \varepsilon \]

 On outside lane the parameters are fixed as \(\alpha = 0, \beta = 1.0 \)

- **Step 3**: Lane-flow equilibrium curve is calculated on an imaginary ring road.
• Step 1: Calibrate parameters of fundamental diagram by Least Square Method using detector data.

• Step 2: Give tentative parameters of the cost function.

\[c_{n|l|t}(k_{i|l|t}) = \alpha_{n|l|t} + \beta_{n|l|t} \cdot \left\{ f_{i|l}(k_{i|l|t}) \right\}^{-1} + \epsilon \]

On outside lane the parameters are fixed as \(\alpha = 0, \beta = 1.0 \)

• Step 3: Lane-flow equilibrium curve is calculated on an imaginary ring road.

• Step 4: Such parameters are found that minimizes the residual error by Quasi-Newton Method.
Study site

- 3 lanes section (for one way), Chugoku expressway in Japan
- 30 days obs. (from Mar, 2010 to Sep, 2010)
- 5 min aggregation for Q and V, makes K

Moving direction

To Osaka

Altitude

-5.0 % -2.2 % -4.0 % -1.7 % +2.3 % -2.0 % -3.0%

Kilopost [km]

25.20 kp 23.12 kp 20.90 kp 20.32 kp

Takaraduka-w TN

Takaraduka-w TN (BN)

Aobadai TN
Calibration results

- Quasi-Newton method gives the convergence solutions.

![Diagram](image_url)

- Altitude
 - Aobadai TN: -2.2%
 - Takaraduka-w TN (BN): -1.7%
 - Moving direction
 - Kilopost [km]:
 - 25.20 kp
 - 23.12 kp
 - 20.90 kp
 - 20.32 kp

![Lane flow distribution](image_url)

- Density [veh/km/3lanes]
 - Outside
 - Middle
 - Median
 - Outside (est)
 - Middle (est)
 - Median (est)
Calibration results

- Quasi-Newton method gives the convergence solutions.
\(\alpha: \) Cost breaking keep-left rule

When traffic density is low, more traffic is likely use on the outside lane, and the middle lane follows.
- β: Sensitivity to travel time

When traffic density is high, more traffic is likely to use the median lane, and the middle lane follows.
Discussions on the estimated parameters

- α: Cost for breaking “keep-left rule”

20.90kp (サグ底地点)，20.32kp (上り勾配)でやや高い値（＝使われにくい）

追越車線の方が高い値（＝低密度時には利用されにくい）

23.13kp (下り勾配)，20.90kp (サグ底)ではやや低い値（＝使われやすい）
Discussions on the estimated parameters

- **β**: Sensitivity to travel time

 - 20.90kp (サグ底) でやや低い値（＝感度が低い）
 - 第2走行車線の方が感度が高い（＝混雑時に他車線へシフトしやすい）
 - 23.13kp（下り勾配）、20.90kp（サグ底）ではやや高い値（＝他車線へ流出しやすい）

![Graph showing estimated parameters](image-url)
Discussions on the estimated parameters

-ボトルネックへ至るまでの車線利用特性

下り区間からサグ底に掛けて相対的に第2走行車線への利用が集中

上り区間で追越車線への利用がシフト
Conclusions

- Multilane first-order traffic flow model, which endogenously represents the lane flow equilibrium
 - Lane flow distribution
 - Traffic dynamics among lanes along characteristic wave
- Calibration for
 - 3 unknown parameters for FD per lane
 - 2 unknown parameters for the cost function for lane choice
 - Good representations of lane-flow equilibrium
Future works

- The adjustment parameter, τ

 \[z(t+1, i+1) = z(t, i) + \frac{1}{\tau} \left(y^* - z(t, i) \right) \]

- Empirical and quantitative analysis about the volume of lane-changes

- Elaborate the multi-lane traffic flow model
 - Mandatory lane changes
 - Multiclass modeling
 - Foreseeing behaviors
 - Disturbance caused by lane-changes, etc.

Thank you for your attention. Any question and comment?